Unit 6 Probability

Day 1 Counting Techniques

<u>Warm Up</u>

Homework Discussion

Homework TonightPacket p. 1–2

Unit 6 Probability

Day 1 Fundamental Counting Principle Other Counting Techniques

Probability

I. Introduction

Probability Defined:

What do you know about probability?

Probability

I. Introduction

- **Probability Defined:**
- General: Probability is the likelihood of something happening
- Mathematical expression:
 - $Probability = \frac{Number of desired outcomes}{Number of total outcomes}$

Today, we'll focus on counting techniques to help determine this total #!

Basic Counting Methods for Determining the Number of Possible Outcomes

a. Tree Diagrams:

Example #1: LG will manufacture 5 different cellular phones: Ally, Extravert, Intuition, Cosmos and Optimus. Each phone comes in two different colors: Black or Red. Make a tree diagram representing the different products.

How many different products can the company display?

b. In general:

- If there are <u>m</u> ways to make a first selection and <u>n</u> ways to make a second selection, then there are <u>m times n</u> ways to make the two selections simultaneously. This is called the Fundamental Counting Principle.
- Ex #1 above: 5 different cell phones in 2 different colors. How many different products?

 $5 \cdot 2 = 10$

Practice

Ex #2: Elizabeth is going to completely refurbish her car. She can choose from 4 exterior colors: white, red, blue and black. She can choose from two interior colors: black and tan. She can choose from two sets of rims: chrome and alloy. How many different ways can Elizabeth remake her car? Make a tree diagram and use the Counting Principle.

 $4 \cdot 2 \cdot 2 = 16$

Ex #3: Passwords for employees at a company in Raleigh NC are 8 digits long and must be numerical (numbers only). How many passwords are possible? (Passwords cannot begin with 0)

 $9 \cdot 10 = 90,000,000$

B. Permutations—Another way to "count" possibilities

a. Two characteristics: 1. Order <u>IS important</u>

2. No item is used more than once

Example #1

There are six "permutations", or arrangements, of the numbers 1, 2 and 3.

What are they?

123132213231312321

How many ways can 10 cars park in 6 spaces? The other four will have to wait for a parking spot. ③

(Use the Fundamental Counting Principle)

 $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 151200$

b. Formula:

If we have a large number of items to choose from, the fundamental counting principle would be inefficient. Therefore, a formula would be useful. First we need to look at "factorials". Notation: <u>n!</u> stands for n factorial

Definition of n factorial: For any integer n>0, n! = n(n-1)(n-2)(n-3)...(3)(2)(1)

<u>Supplemental Example:</u> **4! = 4•3•2•1**

Example #2 (revisited):

We could rewrite the computation in our example as follows: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}$ $= \frac{10!}{4!}$ Furthermore, notice that $= \frac{10!}{4!} = \frac{10!}{(10-6)!}$

So, the number of permutations (or <u>arrangements</u>)

of 10 cars taken 6 at a time is 151200

Generally, the *Number of Permutations* of *n* items taken *r* at a time,

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

How to do on the calculator: n MATH PRB nPr r

Note: You'll have to know how to calculate these by hand, BUT remember you can check your work with the calculator!

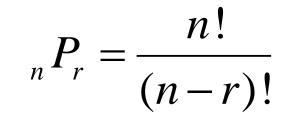
c. <u>EXAMPLE #3</u>

In a scrabble game, Jane picked the letters A,D,F,V, E and I. How many permutations (or <u>arrangements</u>) of 4 letters are possible?

$$\frac{6!}{(6-4)!} = 360$$

Let's do both ways – by hand with the formula and in the calculator!

Practice Problems



1. Evaluate: (By hand then using $_n P_r$ function on the calculator to check your answer.)

a. ${}_{10}P_3$ b. ${}_{9}P_5$ 720 15120

2. How many ways can runners in the 100 meter dash finish 1st (Gold Medal), 2nd (Silver) and 3rd (Bronze Medal) from 8 runners in the final? NOTE: This is a permutation because the people are finishing in a position. ORDER matters!

336

C. Combinations

- a. Two characteristics:
 - 1. Order <u>DOES</u> <u>NOT</u> matter
 - 2. No item is used more than once

Supplemental Example: How many "combinations" of the numbers 1, 2 and 3 are possible?

There is just 1 combination of 1, 2, 3 because order doesn't matter so 123 is considered the same as 321, 213, etc.

EXAMPLE:

While creating a playlist on your ipod you can choose 4 songs from an album of 6 songs. If you can choose a given song only once, how many different combinations are possible? (List all the possibilities)

We'll let A, B, C, D, E, and F represent the songs. ABCD ABCE ABCF ACDE ACDF ADEF ABDE ABDF ACEF ABEF

BCDEBCDFBDEFCDEFBCEFThere are 15 combinations!

b. Formula:

Making a list to determine the number of combinations can be time consuming. Like permutations, there is a general formula for finding the number of possible combinations.

<u>Number of Combinations</u> of *n* items taken *r* items at a time is ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$

How to do on the calculator: n MATH PRB nCr r

Let's look at the Playlist EXAMPLE again

While creating a playlist on your I pod you can choose 4 songs from an album of 6 songs. If you can choose a given song only once, how many different combinations are possible? (List all the possibilities)

Let's do both ways – by hand with the formula and in the calculator!

Practice Problems ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$ 1. Evaluate: a. ${}_{4}C_{2}$ b. ${}_{7}C_{3}$ c. ${}_{8}C_{8}$

- 2. A local restaurant is offering a 3 item lunch special. If you can **choose 3 or fewer items** from a total of 7 choices, how many possible combinations can you select?
- 3. A hockey team consists of ten offensive players, seven defensive players, and three goaltenders. In how many ways can the coach select a starting line up of three offensive players, two defensive players, and one goaltender?

Practice Problems ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$

1. Evaluate:

- a. ${}_{4}C_{2}$ b. ${}_{7}C_{3}$ c. ${}_{8}C_{8}$
 - 6 35 1

Practice Problems

$$_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$$

2. A local restaurant is offering a 3 item lunch special. If you can **choose 3 or fewer items** from a total of 7 choices, how many possible combinations can you select?

 $_{7}C_{3} + _{7}C_{2} + _{7}C_{1} + _{7}C_{0} = 64$

3. A hockey team consists of ten offensive players, seven defensive players, and three goaltenders. In how many ways can the coach select a starting line up of three offensive players, two defensive players, and one goaltender?

 $_{10}C_3 \cdot _7C_2 \cdot _3C_1 = 7560$

$$_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!} \qquad _{n}P_{r} = \frac{n!}{(n-r)!}$$

<u>Mixed Practice:</u> Indicate if the situation following is a Permutation or Combination. Then, solve.

a. In a bingo game 30 people are playing for charity. There are prizes for 1st through 4th. How many ways can we award the prizes?

 $_{30}P_3 = 24360$

b. From a 30-person club, in how many ways can a President, Treasurer and Secretary be chosen?

Permutation or Combination

$$_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!} \qquad _{n}P_{r} = \frac{n!}{(n-r)!}$$

<u>Mixed Practice:</u> Indicate if the situation following is a Permutation or Combination. Then, solve.

c. In a bingo game 30 people are playing for charity. There are two \$50 prizes. In how many ways can prizes be awarded? Permutation or Combination ${}_{30}C_2 = 435$

d. How many 3-digit passwords can be formed with the numbers 1, 2,3,4,5 and 6 if no repetition is allowed?

Permutation or Combination

 $_{6}P_{3} = 120$

$$_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$$
 $_{n}P_{r} = \frac{n!}{(n-r)!}$

<u>Mixed Practice:</u> Indicate if the situation following is a Permutation or Combination. Then, solve.

e. Converse is offering a limited edition of shoes. They are individually made for you and you choose 4 different colors from a total of 25 colors. How many shoes are possible? Permutation or Combination $25C_4 = 12650$

f. A fast food chain is offering a \$5 box special. You can choose no more than 5 items from a list of 8 items on a special menu. In how many ways could you fill the box?

Permutation or Combination

 $_{8}C_{5} + _{8}C_{4} + _{8}C_{3} + _{8}C_{2} + _{8}C_{1} + _{8}C_{0} = 219$

Closing

- Ticket out the door
 - Write down the two new formulas you learned.
 - Write down what n! means.