Unit 3 Day 13
 Review

Warm-up!

Graph the following functions, with at least 4 points. Find the domain and range. Then, tell how they are changed from their parent graph. (Hint: Remember that the order of transformations can be important)

1) $f(x)=\frac{4}{x+3}-1$

Find the inverse
3) $y=3 x^{5}+7$
2) $f(x)=2 \sqrt[3]{x-3}-5$

Solve
4) $\sqrt{2 v-7}=v-3$

Solve
5) $y=\sqrt{2 x}$

$$
3 y-x=4
$$

Warm-Up Solutions

Find the domain and range of the following functions. Then, tell how they are changed from their parent graph. (Hint:
Remember that the order of transformations can be important)

1) $f(x)=\frac{4}{x+3}-1$
2) $f(x)=2 \sqrt[3]{x-3}-5$

Domain: $(-\infty,-3) \cup(-3, \infty)$
Range: $(-\infty,-1) \cup(-1, \infty)$
Vertical Stretch by 4, left 3, down 1
3) Find the inverse
$y=3 x^{5}+7 \quad y=\sqrt[5]{\frac{x-7}{3}}$

$$
\begin{aligned}
& \text { 4) Solve } 4 \\
& \sqrt{2 V-7}=V-3
\end{aligned}
$$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Vertical Stretch by 2, right 3, down 5
5) Solve $y=\sqrt{2 x}$

$$
3 y-x=4
$$

$$
(2,2) \text { and }(8,4)
$$

Homework

Review for Unit 3 Test Worksheet

*Study for Unit 3 Test!!

Whiteboard Review

Please pick up:

A whiteboard
A marker
A felt piece (for an eraser)

Simplify the radical

$$
\sqrt[4]{128 x^{7} y^{7}}
$$

$$
2 x y \sqrt[4]{8 x^{3} y^{3}}
$$

Solve for r.

$3646=1+5(4 r+17)^{2}$

16

Multiply

$$
x^{1 / 2} \cdot x^{1 / 5}
$$

$$
x^{7 / 10}
$$

Graph, giving at least 4 exact points. Find the domain, range, and vertical and horizontal asymptotes.

$$
\begin{gathered}
f(x)=\frac{8}{x-2}+1 \\
D:(-\infty, 2) \cup(2, \infty) \\
R:(-\infty, 1) \cup(1, \infty) \\
V A: x=2 \\
H A: y=0
\end{gathered}
$$

Solve for p.

$$
\sqrt{-10+7 p}=p
$$

2, 5

Simplify.

$$
\frac{b^{3}}{a^{4}}
$$

Find the inverse.

$$
y=4 x+5
$$

$$
y=\frac{x-5}{4}
$$

Graph, using at least 4 exact points. Find the domain, range, and tell how it was changed from the parent graph.

$$
\begin{gathered}
f(x)=\sqrt{x+4}+2 \\
D:[-4, \infty) \\
R:[2, \infty) \\
\text { Translated left 4, up 2 }
\end{gathered}
$$

Does the data show direct or inverse variation? Use this information to find the missing value.

x	0.5	-0.5	20	-1
y	10	-10	$?$	-5

$$
\begin{gathered}
\text { Inverse } \\
y=\frac{5}{x}, \text { so } y=\frac{1}{4}
\end{gathered}
$$

Graph at least 5 exact points.
Find the domain, range, and
Tell how it was changed from the parent graph.

$$
\begin{aligned}
& f(x)=-\sqrt[3]{x-5}-4 \\
& D:(-\infty, \infty) \\
& R:(-\infty, \infty) \\
& \text { Right } 5, \text { down 4, reflection over x-axis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } \mathrm{x} \text { when } \mathrm{y}=5 \text {, if } \mathrm{y} \text { varies inversely } \\
& \text { as } \mathrm{x} \text { and } \mathrm{x}=6 \text { when } \\
& \mathrm{y}=-18 \\
& y=\frac{k}{x} \\
& y=\frac{-108}{x} \\
& -18=\frac{k}{6} \quad 5=\frac{-108}{x} \quad \text { OR use } x_{1} y_{1}=x_{2} y_{2} \\
& k=-108
\end{aligned} \quad x=-21.6 \text {. } \begin{aligned}
& y=
\end{aligned}
$$

In-Class Practice \& Review

*Ask questions from Quiz

*Start Homework
Review for Unit 3 Test Worksheet
*Study for Unit 3 Test!!

Extra problems

- On next slides

Extra Review - with ANSWERS

Review (not in notes)
Find the solution to each equation algebraically.

1) $\sqrt{20 x-6}=\sqrt{5 x+39}$

$$
x=3
$$

$$
\text { 2) } \begin{gathered}
2(x-2)^{2 / 3}-8=192 \\
x=1002
\end{gathered}
$$

$$
\text { 3) }(x+7)^{1 / 2}-x=5
$$

$$
x=-3
$$

Extra problems - with answers!

Old Released Exam problem!!

5. The force, F, acting on a charged object varies inversely to the square of its distance, r, from another charged object. When the two objects are 0.64 meters apart, the force acting on them is $\mathbf{8 . 2}$ Newtons. Approximately how much force would the object feel if it is at a distance of 0.77 meters from another object? Round to the tenths place.

$$
\begin{aligned}
\mathrm{F}=\frac{\mathrm{k}}{r^{2}} \quad \text { where } \mathrm{F} & =\text { force acting on a charged object, } \\
\mathrm{r} & =\text { distance from another charged object }
\end{aligned}
$$

$$
F=\underline{3.35872}
$$

$$
r^{2}
$$

$F=\underline{3.35872}=$ Force on object at a $(0.77)^{2}$ distance 0.77 m from object

F ~ 5.7 Newtons

$$
\begin{aligned}
& 8.2=\frac{k}{(0.64)^{2}} \\
& \begin{aligned}
\mathrm{k} & =(8.2)(0.64)^{2} \\
& =3.35872
\end{aligned}
\end{aligned}
$$

Extra practice - with ANSWERS!

Released Exam problems !!

6. The amount of time it takes to build a road varies inversely with the number of workers building the road. Suppose it takes 50 workers 8 months to build the road. Write an equation that could be used to determine how long it would take n workers to build the road. (Be sure to define the variables. How much faster would 60 workers build the road than $\mathbf{5 0}$ workers?

$$
\begin{aligned}
& \mathrm{t}=\underline{\mathrm{k}} \quad \text { where } \mathrm{t}=\text { time in months, and } \\
& \text { n } \quad \mathrm{n}=\# \text { people working to build the road } \\
& 8=\frac{k}{50} \\
& t=\underline{400}=62 / 3 \text { months } \\
& 60 \text { for } 60 \text { workers } \\
& t=\underline{400} \\
& \text { n } \\
& \mathrm{t}=8 \text { months }-62 / 3 \text { months } \\
& \text { = } 11 / 3 \text { months faster!! }
\end{aligned}
$$

Simplify the radical

$$
\sqrt[3]{-16 a^{3} b^{8}}
$$

$$
-2 a b^{2} \sqrt[3]{2 b^{2}}
$$

Solve for n.

$$
(n-27)^{\frac{3}{2}}=64
$$

43

Solve for x .

$$
26=-1+(27 x)^{\frac{3}{4}}
$$

3

Simplify.

$\left(81 m^{6}\right)^{\frac{1}{2}}$

$9 m^{3}$

Solve for b.

$$
3=\sqrt{b-1}
$$

10

Simplify.

$3 \sqrt{3 y^{3}}-y \sqrt{27 y}$
0

Simplify.

$$
\begin{gathered}
\sqrt[5]{576 y^{5} x^{12}} \\
2 x^{2} y \sqrt[5]{18 x^{2}}
\end{gathered}
$$

Put the function in a form easier to graph. Then, find the domain, range, and Tell how it was changed from the parent graph.

$$
\begin{aligned}
& f(x)=-\sqrt{25 x-100}+6 \\
& y=-5 \sqrt{x-4}+6 \\
& D:[4, \infty) \\
&:(-\infty, 6] \\
& \text { Reflected over } x \text {-axis, right } 4 \\
& \text { up } 6, \text { and stretched by } 5 \text { vertically }
\end{aligned}
$$

Is the following a direct or inverse variation?

 Write the equation for the variation.$$
\begin{array}{ccc}
\mathbf{X} & \mathbf{Y} & \\
2 & \mathbf{4} & \text { Direct } \\
\mathbf{4} & \mathbf{8} & \\
10 & 20 & y=2 x \\
12.5 & 25 &
\end{array}
$$

In kick boxing, it is found that the force, f, needed to break a board, varies inversely with the length, I, of the board. If it takes 5 lbs of pressure to break a board 3 feet long, how many pounds of pressure will it take to break a board that is 12 feet long? (Round to the nearest hundredth if necessary.)

$$
\begin{aligned}
& (5,3) \text { and }(x, 12) \\
& 5(3)=12 x \quad \text { or use } y=\frac{k}{x} \text { method } \\
& x=\frac{5}{4}=1.25
\end{aligned}
$$

Solve the equation. Check for any extraneous solutions.

$$
x=-125
$$

Solve the equation. Check for any extraneous solutions.

$$
\sqrt[3]{x+4}=\sqrt[3]{3 x-10}
$$

Solve the equation. Check for any extraneous solutions.

Solve the equation. Check for any extraneous solutions.

$$
\sqrt{2 x}-\sqrt{x^{2}-24}=0
$$

Solve the equation. Check for any extraneous solutions.

$$
\begin{gathered}
(x+5)^{\frac{1}{6}}+3=0 \\
\text { No Solution }
\end{gathered}
$$

