Unit 2 Day 1

FRED Functions

<u>Arrival</u>

Pick up Papers by window!

Start on Fred Functions Packet

Fred Functions

After you finish a CheckPoint, check in with teacher before continuing! ©

Homework Tonight

Unit 2 Homework Packet p. 1-3 If you get stuck, complete parts of Fred Notes that you didn't finish in class

Print Unit 2 HW Packet, if not yet! You MUST have a printed copy for Unit 2, due to all of the graphs! Remember, if you can't print, you must still do the HW! ©

> Get and bring to class daily: 1) Graph Paper 2) Tape 3) Scissors 4) Colored pen/pencil 5) Graphing Calculator

Fred Functions

To the right is a graph of a **"Fred" function**. We can use Fred functions to explore transformations in the coordinate plane. Let's review briefly.

- Explain what we mean by the term domain. The set of all inputs (x-values) of a function or relation
 - 1. Using the graph, what is the domain of Fred?

 $\{x \mid -1 \le x \le 4\}$

Explain what we mean by the term range.

The set of all outputs (y-values) of a function or relation

2. Using the graph, what is the range of Fred?

 $\{y \mid -2 \le y \le 1\}$

Fred Functions

Let's explore the points on Fred.

3. How many points lie on Fred? Infinite!

4. What are the key points that would help us graph Fred? (-1, 1), (1, -1), (2, -1), (4, -2)

We are going to call these key points "characteristic" points. It is important when graphing a function that you are able to identify these characteristic points.

Use the graph of graph to evaluate the following.

$$F(1) = -1 \qquad F(-1) = 1 \qquad F(4) = -2 \qquad F(5) = Undefined!$$
Not in the domain

Continue Fred Functions

After you finish checkpoint, remember to check in with teacher!

Checkpoint p. 2

Equation	Effect to Fred's graph
Example: y=F(x) + 18	Translate up 18 units
1. $y = F(x) - 100$	Translate down 100 units
2. $y = F(x) + 73$	Translate up 73 units
3. $y = F(x) + 32$	Translate up 32 units
4. $y = F(x) - 521$	Translate down 521 units

Fred Functions p. 3-4 After doing BOTH checkpoints, remember to check in with teacher!

Checkpoint p. 4

Equation	Effect to Fred's graph
Example: y=F(x + 18)	Translate left 18 units
1. $y = F(x - 10)$	Translate right 10 units
2. $y = F(x) + 7$	Translate up 7 units
3. $y = F(x + 48)$	Translate left 48 units
4. $y = F(x) - 22$	Translate down 22 units
5. $y = F(x + 30) + 18$	Translate left 30 units and up 18 units

Bottom Checkpoint p. 4

Equation	Effect to Fred's graph
Example: y=F(x + 8)	Translate left 8 units
1. $y = F(x) + 29$	Translate up 29 units
2. $y = F(x - 7)$	Translate right 7
3. $y = F(x + 45)$	Translate left 45
4. $y = F(x+5) + 14$	Translate left 5 and up 14
5. $y = F(x - 6) - 2$	Translate down 2 and right 6

III. Checkpoint p. 7

2. y = -H(x) reflection in x-axis

Reflection in the x-axis

Reflection in the y-axis

Keep going!

Complete #43 – Checkpoint after #52, if not yet

VI. Checkpoint p. 9

1. Complete each chart below. Each chart starts with the characteristic points of Fred.

x	F(x)	3 F(x)
-1	1	3
1	-1	-3
2	-1	-3
4	-2	-6

x	F(x)	¼ F(x)
-1	1	1⁄4
1	-1	-1⁄4
2	-1	-1⁄4
4	-2	-½

Compare the 2nd and 3rd columns of each chart above. The 2nd column is the y-value for Fred. Can you
make a conjecture about how a coefficient changes the parent graph?

Students will likely say that a coefficient greater than 1 stretches the graph (makes it taller/steeper) and a coefficient less than 1 compresses it (makes it shorter/less steep). This is not fully accurate but will be addressed in the next investigation.

VIII. Checkpoint p. 10 (continues on next slide)

Equation	Effect to Harry's graph	
Example: y=-5H(x)	Reflect over x-axis, vertical stretch by 5	
d. y = 3H(x)	Vertical stretch by 3	
e. y = -2H(x)	Reflect over x-axis, vertical stretch by 2	
f. $y = 1/2H(x)$	Vertical compression by 1/2	

VIII. Checkpoint (con't) p. 10

Homework Tonight

Unit 2 Homework Packet p. 1-3 If you get stuck, complete parts of Fred Notes that you didn't finish in class

Print Unit 2 HW Packet, if not yet! You MUST have a printed copy for Unit 2, due to all of the graphs! Remember, if you can't print, you must still do the HW! ©

> Get and bring to class daily: 1) Graph Paper 2) Tape 3) Scissors 4) Colored pen/pencil 5) Graphing Calculator