12.4 Compositions of Transformations

Identify each mapping. Specifically describe each transformation by indicating the center and angle of rotation, reflection line, and/or translation vector.

Example: ABC -> PQM is glide reflection with a translation <11, 0> and a reflection over the line x = 4.

38. $\triangle ABC \rightarrow \triangle EDC$

39. $\triangle EDC \rightarrow \triangle PQM$

40. $\triangle MNJ \rightarrow \triangle EDC$

41. $\triangle HIF \rightarrow \triangle HGF$

42. $\triangle PQM \rightarrow \triangle JLM$

43. $\triangle MNP \rightarrow \triangle EDC$

44. $\triangle JLM \rightarrow \triangle MNJ$

45. $\triangle PQM \rightarrow \triangle KJN$

46. $\triangle KJN \rightarrow \triangle ABC$

47. $\triangle HGF \rightarrow \triangle KJN$

12.7 Dilations (continues on next slide)

46. Error Analysis Brendan says that when a rectangle with length 6 cm and width 4 cm is dilated by a scale factor of 2, the perimeter and area of the rectangle are doubled. Explain what is incorrect about Brendan's statement.

The diagram at the right shows $\triangle LMN$ and its image $\triangle L'M'N'$ for a dilation with center *P*.

47. Algebra Find the values of *x* and *y*.

48. How does the area of $\triangle L'M'N'$ compare with the area of $\triangle LMN$?

Problems continue on next slide ->

12.7 Dilations (continued)

Write *true* or *false* for Exercises 57–61. Explain your answers.

- **57.** A dilation is an isometry. **58.** A dilation changes orientation.
- **59.** A dilation with a scale factor greater than 1 is a reduction.
- **60.** For a dilation, corresponding angles of the image and preimage are congruent.
- 61. A dilation image cannot have any points in common with its preimage.
- **62.** A flashlight projects an image of rectangle *ABCD* on a wall so that each vertex of *ABCD* is 3 ft away from the corresponding vertex of A'B'C'D'. The length of \overline{AB} is 3 in. The length of $\overline{A'B'}$ is 1 ft. How far from each vertex of *ABCD* is the light?

