12.4 Compositions of Transformations

Identify each mapping. Specifically describe each transformation by indicating the center and angle of rotation, reflection line, and/or translation vector.
Example: ABC -> PQM is glide reflection with a translation $<11,0>$ and a reflection over the line $x=4$.
38. $\triangle A B C \rightarrow \triangle E D C$
39. $\triangle E D C \rightarrow \triangle P Q M$
40. $\triangle M N J \rightarrow \triangle E D C$
41. $\triangle H I F \rightarrow \triangle H G F$
42. $\triangle P Q M \rightarrow \triangle J L M$
43. $\triangle M N P \rightarrow \triangle E D C$
44. $\triangle J L M \rightarrow \triangle M N J$
45. $\triangle P Q M \rightarrow \triangle K J N$

46. $\triangle K J N \rightarrow \triangle A B C$
47. $\triangle H G F \rightarrow \triangle K J N$

12.7 Dilations (continues on next slide)

46. Error Analysis Brendan says that when a rectangle with length 6 cm and width 4 cm is dilated by a scale factor of 2 , the perimeter and area of the rectangle are doubled. Explain what is incorrect about Brendan's statement.

The diagram at the right shows $\triangle L M N$ and its image $\Delta L^{\prime} M^{\prime} N^{\prime}$ for a dilation with center P.
47. Algebra Find the values of x and y.
48. How does the area of $\Delta L^{\prime} M^{\prime} N^{\prime}$ compare with the area of $\triangle L M N$?

Problems continue on next slide ->

12.7 Dilations (continued)

Write true or false for Exercises 57-61. Explain your answers.

57. A dilation is an isometry. 58. A dilation changes orientation.
58. A dilation with a scale factor greater than 1 is a reduction.
59. For a dilation, corresponding angles of the image and preimage are congruent.
60. A dilation image cannot have any points in common with its preimage.
61. A flashlight projects an image of rectangle $A B C D$ on a wall so that each vertex of $A B C D$ is 3 ft away from the corresponding vertex of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The length of $\overline{A B}$ is 3 in . The length of $\overline{A^{\prime} B^{\prime}}$ is 1 ft .

not to scale How far from each vertex of $A B C D$ is the light?
