Name: \qquad

Transformations Test Review Homework

Using the figure shown, find the image for the specified transformation.

1. 90° clockwise rotation of $\overline{A B}$ about P.
2. 90° clockwise rotation of D about P.
3. 90° counterclockwise rotation of $\overline{\mathrm{GH}}$ about P.
4. 180° counterclockwise rotation of $E F$ about P.
5. 180° clockwise rotation of $\triangle C J D$ about P.
6. 90° counterclockwise rotation of $\triangle G L F$ about P.

7. Rotate the quadrilateral with coordinates $A(1,1), B(3,1), C(6,4)$, and $D(1,3)$, given the angles shown. Then graph the quadrilaterals on the same coordinate plane.
a. 90°
b. 180°
c. 270°
d. 360°
8. Reflect the triangle with coordinates $D(-3,0), E(-4,4)$, and $F(1,1)$ in each line. Then graph each pair of triangles on the same coordinate plane.
a. y-axis
b. x-axis
c. $y=x$
d. $y=-x$

Perform the stated transformation on the preimage, $\triangle A B C$. Give the coordinates of the image, $\Delta A^{\prime} B^{\prime} C^{\prime}$.
9. Rotation 90° clockwise about the origin
10. Reflection in $x=3$
11. Translation $(x, y) \rightarrow(x+3, y-2)$

Perform the stated algebraic rule on the preimage, $\triangle A B C$. Give the coordinates of the image, $\Delta A^{\prime} B^{\prime} C^{\prime}$. Specifically describe the transformation.

12. $(x, y) \rightarrow(-x,-y)$
13. $(x, y) \rightarrow(x-3, y-2)$
14. $(x, y) \rightarrow(-2 y,-2 x)$

For \#15-22, use $\triangle A B C$. Write the coordinates of each image, then write its algebraic rule.
15. a dilation four times the original size
16. a dilation half the original size
17. a rotation of 90°
18. a rotation of 180°
19. a translation 2 units left and 3 units down
20. a translation 1 unit right and 7 units up
21. a reflection in $y=x$
22. a reflection in the x-axis

Find a single transformation that has the same effect as the composition of transformations indicated. Describe the transformation specifically. Then write the algebraic rule for the composition.
23. <-5, -7> followed by <3,6>
24. <10, -9> followed by <1,5>
25. Translation up 3 and right 4 , and a reflection over $y=-x$.
26. Reflection over $y=0$ and reduction by $1 / 3$.

Triangle TAM has vertices $T(0,5), A(4,1)$, and $M(3,6)$.
27. What is the domain and range of TAM in interval notation?
28. Find the image of triangle TAM after performing the glide vector $\langle-4,0>$ and reflection in the line $y=-2$. Label the image $T^{\prime} A^{\prime} M^{\prime}$.
29. What is the domain and range of $T^{\prime} A^{\prime} M^{\prime}$ in interval notation?

Find a function rule for the transformation of $c(x)$ with.
31. Translation left 5 , up 3 , vertical stretch by 2
32. Reflection over the x-axis, vertical compression of $\frac{1}{2}$, and translation left 7
33. Reflection over y-axis and translation down 4

Given the function rule shown, determine the transformations of $h(x)$.
34. $y=-3 h(x-2)+1$
35. $y=\frac{1}{2} h(-x)-4$
36. $y=-h(x+7)+5$

Specifically describe each transformation. Examples: $A B C D \rightarrow$ GFED is a rotation 180 degrees about D.
37. $\square A B C D \rightarrow \square G H C D$
38. $\square H G J I \rightarrow \square L M J K$
39. $\square G F E D \rightarrow \square R Q O P$
40. $\square M N O P \rightarrow \square A B C D$

Solve given the information provided
41. a. Solve for m.

42. If $A D=12$ and $A C=4 y-36$, find y. Then find $A C$ and $D C$.

Use the diagram, below right, for Exercises 43 and 44. Solve for x.
(Hint: Find the angle measures to check your work.)
43. $m \angle A O C=7 x-2, m \angle A O B=2 x+8$,
$m \angle B O C=3 x+14$
44. $m \angle A O B=28, m \angle B O C=3 x-2, m \angle A O D=6 x$

