1. $\angle 3 \cong \angle 2$
2. $m \angle 1+m \angle 2=180$
3. $m \angle 3+m \angle 2=180$
4. $m \angle 1=m \angle 3$
5. $\angle 1 \cong \angle 3$
6. $\angle 1 \cong \angle 2$
7. $\angle 2 \cong \angle 3$
8. $\angle 3 \cong \angle 4$
9. $\angle 1 \cong \angle 4$
10. $\angle 2 \cong \angle 4$

11. $a \| b$

12. $m \angle 1+m \angle 4=180$

14. $l|\mid m$

B.

If $\angle \mathrm{s}$ are linear pair,
then $\angle \mathrm{s}$ are supplementary

C.

Transitive property \cong
D.

If || lines are cut by a trans., then corresponding $\angle \mathrm{s}$ are \cong.
F.

Substitution property

G.

If || lines are cut by a trans., then corresponding $\angle \mathrm{s}$ are \cong.

$$
\begin{aligned}
& \text { A. } \\
& \text { If } \cong \text {, then }= \\
& \text { If }=\text {, then } \cong
\end{aligned}
$$

H.

Symmetric property \cong
I.
J.
Given
K.

If || lines are cut by a trans., then alt. interior $\angle \mathrm{s}$ are \cong.

M.

Reflexive property
\cong

Transitive property

$=$ L.

Reflexive property

If 2 lines are cut by a trans. so that corr. $\angle \mathrm{s}$ are \cong, then lines are $\|$.

O.

If 2 lines are cut by a trans.
and alt. int. $\angle \mathrm{s}$ are \cong,
then lines are \|.
15.
$\angle 1$ and $\angle 2$
are a linear pair
Q.

Definition of Linear Pair

Definition of Linear Pair

Q.
Definition of Linear Pair
Q.

Definition of Linear Pair
$\angle 1$ and $\angle 2$
are a linear pair
Q.

Definition of Linear Pair

