Proof Practice

- Cover up the answers for the reasons (and/or statements).
- Then complete the proof problems.
- For reasons, remember you can write out the theorem or postulate (as seen here) OR state the name of the theorem or postulate.
- Check your work with the proof answers provided.
- You can use these proofs with the Matching Cards (mentioned in the Hints on the proofs), which are in a separate document
- OR better practice would be to just fill in the proofs without cards ☺

Given: $\ell \parallel m$

Prove: $\angle 1 \cong \angle 2$

Hint: Use cards 1, 3, 4, 14 and C, D, E, I

Statement	Reason
<i>l</i> <i>m</i>	Given
$\angle 1 \cong \angle 3$	If \parallel then Corresponding \angle s are \cong
$\angle 3 \cong \angle 2$	Vertical angles are ≅
$\angle 1 \cong \angle 2$	Transitive property \cong

#3 Given: $\ell \parallel m, a \parallel \ell$ Prove: $\angle 1 \cong \angle 2$

Hint: Use cards 1, 3, 4, 11, 14 and C, D, G, I

Statement	Reason
$l \parallel m, a \parallel b$	Given
$\angle 1 \cong \angle 3$	If \parallel then Corresponding \angle s are \cong
$\angle 3 \cong \angle 2$	If \parallel then Corresponding \angle s are \cong
$\angle 1 \cong \angle 2$	Transitive property \cong

Hint: Use cards 4, 7, 8, 9, 11, 14 and C, D, E, G, I		
Statement	Reason	
<i>l</i> <i>m</i> , <i>a</i> <i>b</i>	Given	
$\angle 1 \cong \angle 2$	If \parallel then Corresponding \angle s are \cong	
$\angle 2 \cong \angle 3$	Vertical angles are \cong	
$\angle 3 \cong \angle 4$	If \parallel then Corresponding \angle s are \cong	
∠1≅∠4	Transitive property \cong	

#5

Given: $\ell \parallel m$, $a \parallel b$ Prove:

 $\angle 1 \cong \angle 4$

a b_ l 1 2 **←** 4 3

	Hint: Use cards 4, 7, 8, 9, 11, 14 and C, D, E, G, I		
	Statement	Reason	
	$l \parallel m, a \parallel b$	Given	
	$\angle 1 \cong \angle 2$	Vertical angles are ≅	
	$\angle 2 \cong \angle 3$	If \parallel then Corresponding \angle s are \cong	
	$\angle 3 \cong \angle 4$	If \parallel then Corresponding \angle s are \cong	
	$\angle 1 \cong \angle 4$	Transitive property \cong	
#6	Given: $\ell \parallel m$	l 1/	
Prove: $m \angle 3 + m$		$\angle 2 = 180$ $\overleftarrow{m_3}^2$	

Hint: Use cards 2, 3, 5, 6, 14 and A, B, D, F, I

Statement	Reason
<i>l</i> <i>m</i>	Given
$m \angle 1 + m \angle 2 = 180$	Linear pairs are supplementary
$\angle 1 \cong \angle 3$	If $ $ then Corresponding \angle s are \cong
$m \angle 1 = m \angle 3$	If $\angle s$ are \cong , then measures are =
$m\angle 3 + m\angle 2 = 180$	Substitution Property =

Hint #1: Start with card #11, 14, 5

Hint #2: Then use card #7

Hint #3: Use cards 5, 7, 8, 10,11, 12, 13, 14 and A, B, C, D, F, G, I

Statement	Reason	
$l \parallel m, a \parallel b$	Given	
$m \angle 1 + m \angle 2 = 180$	Linear pairs are supplementary	
$\angle 2 \cong \angle 3$	If \parallel then Corresponding \angle s are \cong	
$\angle 3 \cong \angle 4$	If \parallel then Corresponding \angle s are \cong	
$\angle 2 \cong \angle 4$	Transitive property \cong	
$m \angle 2 = m \angle 4$	If $\angle s$ are \cong , then measures are =	
$m \angle 1 + m \angle 4 = 180$	Substitution Property =	

#7