Proof Practice

- Cover up the answers for the reasons (and/or statements).
- Then complete the proof problems.
- For reasons, remember you can write out the theorem or postulate (as seen here) OR state the name of the theorem or postulate.
- Check your work with the proof answers provided.
- You can use these proofs with the Matching Cards (mentioned in the Hints on the proofs), which are in a separate document
- OR better practice would be to just fill in the proofs without cards :)

\#1

Given: $\ell \| m$
Prove: $\angle 1 \cong \angle 3$

Hint: Use cards 3, 4, 7, 14 and C, D, E, I

Statement
$l \| m$
$\angle 1 \cong \angle 2$
$\angle 2 \cong \angle 3 \quad$ If $\|$ then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 1 \cong \angle 3$
Transitive property \cong

Given: $\quad \ell \| m$
Prove: $\angle 1 \cong \angle 2$

Hint: Use cards 1, 3, 4, 14 and C, D, E, I

Statement
$l \mid \boldsymbol{m}$
$\angle 1 \cong \angle 3$
$\angle 3 \cong \angle 2 \quad$ Vertical angles are \cong
$\angle 1 \cong \angle 2$

Reason
Given
If || then Corresponding $\angle \mathrm{s}$ are \cong

Transitive property \cong

Given: $\quad \ell\|m, a\| \ell$

Hint: Use cards 1, 3, 4, 11, 14 and C, D, G, I

Statement
 Reason

$l\|m, a\| b$
Given
$\angle 1 \cong \angle 3$
If || then Corresponding \angle s are \cong
$\angle 3 \cong \angle 2$
If || then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 1 \cong \angle 2$
Transitive property \cong
\#4
Given: $\ell\|m, a\| \ell$
Prove: $\angle 1 \cong \angle 4$

Hint: Use cards 4, 7, 8, 9, 11, 14 and C, D, E, G, I

Statement

Reason
$l\|m, a\| b \quad$ Given
$\angle 1 \cong \angle 2 \quad$ If $\|$ then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 2 \cong \angle 3 \quad$ Vertical angles are \cong
$\angle 3 \cong \angle 4$
If || then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 1 \cong \angle 4$
Transitive property \cong

Given: $\quad \ell\|m, a\| \ell$ Prove:

$\angle 1 \cong \angle 4$

Hint: Use cards 4, 7, 8, 9, 11, 14 and C, D, E, G, I

Statement	Reason		
$l\\|m, a\\| b$	Given		
$\angle 1 \cong \angle 2$	Vertical angles are \cong		
$\angle 2 \cong \angle 3$	If $\\|$ then Corresponding $\angle s$ are \cong		
$\angle 3 \cong \angle 4$	If $\\|$ then Corresponding $\angle \mathrm{s}$ are \cong		
$\angle 1 \cong \angle 4$	Transitive property \cong		

\#6 Given: $\ell \| m$

Prove:
$m \angle 3+m \angle 2=180$

Hint: Use cards 2, 3, 5, 6, 14 and A, B, D, F, I

Statement Reason
 $l \| m$

$m \angle 1+m \angle 2=180 \quad$ Linear pairs are supplementary

$$
\angle 1 \cong \angle 3 \quad \text { If } \| \text { then Corresponding } \angle \mathrm{s} \text { are } \cong
$$

$m \angle 1=m \angle 3 \quad$ If $\angle \mathrm{s}$ are \cong, then measures are $=$
$m \angle 3+m \angle 2=180 \quad$ Substitution Property $=$

Given: $\ell\|m, a\| €$
Prove:

$$
m \angle 1+m \angle 4=180
$$

Hint \#1: Start with card \#11, 14, 5

Hint \#2: Then use card \#7

Hint \#3: Use cards 5, 7, 8, 10,11, 12, 13, 14 and A, B, C, D, F, G, I

Statement

Reason

$l\|m, a\| b$
Given
$m \angle 1+m \angle 2=180 \quad$ Linear pairs are supplementary
$\angle 2 \cong \angle 3 \quad$ If $\|$ then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 3 \cong \angle 4 \quad$ If $\|$ then Corresponding $\angle \mathrm{s}$ are \cong
$\angle 2 \cong \angle 4 \quad$ Transitive property \cong $m \angle 2=m \angle 4 \quad$ If $\angle \mathrm{s}$ are \cong, then measures are $=$ $m \angle 1+m \angle 4=180 \quad$ Substitution Property $=$

