<u>Day 3</u>

Practice with Special Right Triangles and Pythagorean Theorem & Converse

Tuesday, Day 3

Warm-Up Part 1

1) Each leg of an isosceles right triangle has measure 10 cm. To the nearest tenth of a centimeter, what is the length of the hypotenuse?

Compare the boxed quantity in Column A with the boxed quantity in Column B. Choose the best answer.

- A. The quantity in Column A is greater.
- B. The quantity in Column B is greater.
- C. The two quantities are equal.
- D. The relationship cannot be determined from the information given.

- 45. What is the length of a diagonal of a square with sides of length 4? A. 2 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$
- 46. An isosceles right triangle has area 16 m².
 - a. Find the length of each leg. Leave your answer in simplest radical form. Justify your answer.
 - b. Find the length of the hypotenuse. Justify your answer.

Warm-Up Part 2

Tuesday, Day 3

Warm-Up Part 1 Answers

1) Each leg of an isosceles right triangle has measure 10 cm. To the nearest tenth of a centimeter, what is the length of the hypotenuse? 14.1

Compare the boxed quantity in Column A with the boxed quantity in Column B. Choose the best answer.

- A. The quantity in Column A is greater.
- B. The quantity in Column B is greater.
- C. The two quantities are equal.
- D. The relationship cannot be determined from the information given.

- 5. What is the length of a diagonal of a square with sides of length 4? A. 2 B. $\sqrt{2}$ C. $2\sqrt{2}$ D. $4\sqrt{2}$
- 46. An isosceles right triangle has area 16 m².
 - a. Find the length of each leg. Leave your answer in simplest radical form. Justify your answer.
 - b. Find the length of the hypotenuse. Justify your answer.

Warm-Up

Part 2

HW Discussion

• Sheet on Weebly "HW After Unit 4B Test"

Remember to study for the quiz!

 One focus for your studying should be on what cues to look for in problems to know <u>what</u> <u>method to use</u>

Use the Working a Right Triangle sheet as a reference ⁽ⁱ⁾

Practice for the quiz!

• Working a Right Triangle sheet (skip the bottom one for now)

Done early – start the practice sheet

Practice

Classify the Triangle

1. $\frac{5}{12}, 1, \frac{13}{12}$ **2.** $2\sqrt{3}, 3\sqrt{2}, \sqrt{4}$

Solve for the variables

Practice Answers: Classify the Triangle

These numbers are 5, 12, 13 all divided by the same number. Therefore, they are also a Pythagorean Triple and it is a **right triangle**.

2)
$$2\sqrt{3}, 3\sqrt{2}, \sqrt{4}$$

Convert the numbers back to radicals $\sqrt{12}, \sqrt{18}, \sqrt{4}$ OR Use calculator to find the biggest side.

 $2\sqrt{3}, \sqrt{4}$ are the shortest lengths $(3\sqrt{2})^2 - (2\sqrt{3})^2 + (\sqrt{4})^2$

18 > 12 + 4 The triangle is **obtuse**

Practice Answers

Solve for the variables

More Practice

Is the given triangle right, acute, obtuse, or not possible? 1. $3, \sqrt{45}$, 6 2. 10, 12, 16

3. 3, 6, 9

4. An equilateral triangle has 16 cm sides. Find the altitude.

5. Find the perimeter of a square with a 15 inch diagonal.

Find the value of the variables

More Practice Answers

Is the given triangle right, acute, obtuse, or not possible?

- 1. $3, \sqrt{45}, 6$ *right* Δ (WATCH...sides may not be in order !)
 - 2. 10, 12, 16 $\frac{obtuse}{\Delta}$

3. 3, 6, 9 *not possible* (3+6=9,but)*should be* 3+6 > 9

d

С

b

4. An equilateral triangle has 16 cm sides. Find the altitude.

Find the value of the variables

Practice Day 3 Sheet

Do Right Side #8-18 first!!

(Practice with Special Right Triangles and Converse of Pythagorean Theorem and Related Theorems)

