Day 3
 Practice with

Special Right Triangles and Pythagorean Theorem \& Converse

Warm-Up Part 1

1) Each leg of an isosceles right triangle has measure 10 cm . To the nearest tenth of a centimeter, what is the length of the hypotenuse?

Find the value of x. Leave your answer in simplest radical form.
2)

3)

4)

Compare the boxed quantity in Column A with the boxed quantity in Column B .
Choose the best answer.
A. The quantity in Column A is greater.
B. The quantity in Column B is greater.
C. The two quantities are equal.

Warm-Up
 Part 2

D. The relationship cannot be determined from the information given.

Column A
the length of the diagonal of a square with sides of length 3
the length of the shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with hypotenuse of length 4
the length of an altitude of an
equilateral triangle

Column B

the length of a leg of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with hypotenuse of length 3
the length of the hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with longer leg of length $\sqrt{3}$
the length of the shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
45. What is the length of a diagonal of a square with sides of length 4 ?
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. $4 \sqrt{2}$
46. An isosceles right triangle has area $16 \mathrm{~m}^{\perp}$.
a. Find the length of each leg. Leave your aııswer in simplest radical form. Justify your answer.
b. Find the length of the hypotenuse. Justify your answer.

Warm-Up Part 1 Answers

1) Each leg of an isosceles right triangle has measure 10 cm . To the nearest tenth of a centimeter, what is the length of the hypotenuse? 14.1

Find the value of \boldsymbol{x}. Leave your answer in simplest radical form.
2)

Compare the boxed quantity in Column A with the boxed quantity in Column B.
Choose the best answer.
A. The quantity in Column A is greater.
B. The quantity in Column B is greater.
C. The two quantities are equal.
D. The relationship cannot be determined from the information given.

Warm-Up
 Part 2
 Answers

Column A

A 42.

the length of the diagonal of a square with sides of length 3

the length of the shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with hypotenuse of length 4

D 44 . the length of an altitude of an equilateral triangle

Column B

> the length of a leg of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with hypotenuse of length 3

> the length of the hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with longer leg of length $\sqrt{3}$
the length of the shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
45. What is the length of a diagonal of a square with sides of length 4 ? D
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{7}$
D. $4 \sqrt{2}$
46. An isosceles right triangle has area $16 \mathrm{~m}^{\llcorner }$.
a. Find the length of each leg. Leave your aııswer in simplest radical form. Justify your answer.
b. Find the length of the hypotenuse. Justify your answer.

HW Discussion

- Sheet on Weebly "HW After Unit 4B Test"

Remember to study for the quiz!

- One focus for your studying should be on what cues to look for in problems to know what method to use
- Use the Working a Right Triangle sheet as a reference ©

Practice for the quiz!

- Working a Right Triangle sheet (skip the bottom one for now)
- Done early - start the practice sheet

Practice

Classify the Triangle

$$
\text { 1. } \frac{5}{12}, 1, \frac{13}{12} \quad \text { 2. } 2 \sqrt{3}, 3 \sqrt{2}, \sqrt{4}
$$

Solve for the variables

Practice Answers: Classify the Triangle

1) $\frac{5}{12}, 1, \frac{13}{12}$ These numbers are $5,12,13$ all divided by the same number. Therefore, they are also a Pythagorean Triple and it is a right triangle.
2) $2 \sqrt{3}, 3 \sqrt{2}, \sqrt{4}$
$\xrightarrow{\text { Convert the numbers back to radicals }} \mathrm{OR}$ Use calculator to find the biggest side. $\quad \sqrt{12}, \sqrt{18}, \sqrt{4}$

$$
\begin{gathered}
2 \sqrt{3}, \sqrt{4} \quad \text { are the shortest lengths } \\
(3 \sqrt{2})^{2}-(2 \sqrt{3})^{2}+(\sqrt{4})^{2}
\end{gathered}
$$

$18>12+4$
The triangle is obtuse

Practice Answers

Solve for the variables

4.

$$
x=4
$$

$$
y=4 \sqrt{3}
$$

$$
z=\frac{4 \sqrt{3}}{3}
$$

$$
w=\frac{8 \sqrt{3}}{3}
$$

More Practice

Is the given triangle right, acute, obtuse,
 or not possible?

1. $3, \sqrt{45}, 6$
2. $10,12,16$
3. $3,6,9$
4. An equilateral triangle has 16 cm sides. Find the altitude.
5. Find the perimeter of a square with a 15 inch diagonal.

Find the value of the variables
6.

7.

More Practice Answers

Is the given triangle right, acute, obtuse, or not possible?

1. $3, \sqrt{45}, 6$
right Δ
(WATCH...sides may
not be inorder!)
2. $10,12,16$
obtuse Δ
3. $3,6,9$
not possible
($3+6=9$, but
should be $3+6>9$)
4. An equilateral triangle has 16 cm sides. Find the altitude.

$$
8 \sqrt{3} \mathrm{~cm}
$$

More Practice Answers

5. Find the perimeter of a square with a 15 inch diagonal.

$$
30 \sqrt{2} \text { inches }
$$

Find the value of the variables
6.

7.

$$
y=60^{\circ} \quad x=7 \sqrt{3}
$$

Practice Day 3 Sheet

Do Right Side \#8-18 first!!

(Practice with Special Right Triangles and Converse of Pythagorean Theorem and Related Theorems)

