The large triangle, quadrilateral, and hexagon are all regular polygons with center point O. Find the image of each point or segment for the given rotation. (Hint: the Bold segments form 30 degree angles).
21. 120° rotation
of B about O
23. 60° rotation
of E about O
25.
240° rotation
of G about O
22.
270° rotation
of L about O
24. 300° rotation
of $\overline{I B}$ about O
26. 180° rotation
of $\overline{J K}$ about O

27. a. Find the image of the composition of reflecting segment $B C$ over line $A O$, then again over line HO .
b. Describe the single transformation that could accomplish the composition from part a.
28. Given that H is between J and $K, J K=48, J H=4 x-15$, and $H K=3 x+3$, find the value of x, the length of JH , and the length of HK .
29. The vertices of a triangle are $D(-2,2), E(-2,-3)$ and $F(5,-3)$. Graph and label the image with a reflection over the line $y=-x$. Name the image vertices below.
D^{\prime} \qquad E' \qquad F^{\prime} \qquad
Write the algebraic rule for a reflection over $y=-x$.

30. Graph and label the points $J(-2,2), K(-3,1)$, $L(2,1)$ and $M(4,3)$ and then rotate the figure 270°. Graph and label the image points, and write their coordinates below. Then, write the algebraic rule for the transformation.
J^{\prime} \qquad K^{\prime} \qquad
L' \qquad M^{\prime} \qquad

Write the algebraic rule for the rotation 270° :

31. Given $A(3,1), B(7,1), C(3,4) \ldots$
a. Find the image of the composition of reflecting $\triangle A B C$ over $x=2$, then over $x=-4$.
b. Describe the single transformation that could accomplish the composition from part a.
32. Graph $\triangle A B C$ with $A(5,-3), B(2,-4)$, and $C(1,1)$, then graph the image of $\triangle A B C$ after the translation of $\langle 4,1\rangle$ then reflection over the x-axis.

Label all your points then, write the coordinates of the final image below.

Image \qquad

Write the Algebraic Rule: \qquad

33. Given A is the midpoint of segment $S M$. If $S A=x^{2}+3 x$ and $A M=x+35$, find $S A$.
34. Find $3(x+2)^{2}-(x+2)-4(5 x+1)$
35. Find the vertex form of $y=2 x^{2}+6 x+7$. Show your work by hand.
36. Solve the inequality and write your answer in set notation. $0 \geq 3 x^{2}-2 x-5$
37. Solve for $x . \quad 0=x^{2}-4 x-8$
38. Solve $\sqrt{3 x+7}=x-1$
39. For each function, find the requested information. Graph on separate paper, using at least 4 points.
a. $f(x)=\frac{3}{x+2}-4$
b. $g(x)=\sqrt[3]{x-2}+4$

Domain: \qquad Domain: \qquad
Range: \qquad
Asymptotes: \qquad
Explain how graph changed
Range: \qquad
Vertex: \qquad
Explain how graph changed from parent: \qquad
40. If x varies directly as the cube root of y, and $x=6$ when $y=27$, find x when $y=64$.

