## Test 2 Review & Study Guide

## Modeling with Quadratics

Show ALL work for credit! Use extra paper, if needed.

## **Factor Completely:**

| 1. Factor $x^2 + 8x + 15$ | 2. Factor $x^2 - 11x + 24$ |
|---------------------------|----------------------------|
| Answer:                   | Answer:                    |
| 3. Factor $x^2 + x - 12$  | 4. Factor $3x^2 + 8x + 5$  |
| Answer:                   | Answer:                    |

#### **Factor And Solve:**

| 5. Solve $(5x-4)(x+3) = 0$            | 6. Solve $x^2 - 8x + 12 = 0$                   |
|---------------------------------------|------------------------------------------------|
| Answer:                               | Answer:                                        |
| 7. Solve $x^2 + 12 = 7x$              | 8. The quadratic formula is                    |
|                                       |                                                |
| Answer:                               |                                                |
| 9. A quadratic has                    | 10. Find the exact value of the solution(s) of |
|                                       | a. $-4x+3=x^2$                                 |
| a. 2 real solutions when              |                                                |
| b. 1 real solution when               | b. $3 = 3x^2 + 4x$                             |
| c. 0 real solutions when              |                                                |
| 11. How many real solutions does each | 12. How many times will a parabola touch the   |
| quadratic have?                       | x-axis if its quadratic has                    |
| $a. \qquad y = x^2 + x + 5$           |                                                |
| $b = y - r^2 + 6r + 9$                | a. 2 real solutions                            |
| y = x + 0x + y                        | b. 1 real solution                             |
| $c. \qquad y = x^2 + 6x + 8$          | c. 0 real solutions                            |
|                                       |                                                |

### **Graphs of Quadratics**

| 13. Label the graph to show the<br>y-intercept<br>zeros<br>vertex  |                                                          |
|--------------------------------------------------------------------|----------------------------------------------------------|
| 14. To find the x-value of the vertex by hand, you use the formula | 15. What are two other vocabulary terms for x-intercept? |

# Honors Math 2 Unit 1 Test #2 Review

| 16. The vertex of $y = -x^2 + 8x - 13$ is at   | 17. The x-intercepts of $y = x^2 + 2x - 8$ are        |  |
|------------------------------------------------|-------------------------------------------------------|--|
|                                                |                                                       |  |
| 18. A parabola opens up (like a smile) if      | 19. A parabola opens down (like a frown) if           |  |
|                                                |                                                       |  |
| 20. Which parabolas will open up?              | 21. Which parabolas will open down?                   |  |
| $a. \qquad y = -x^2 + 3x - 5$                  | $a. \qquad y = -x^2 + 3x - 5$                         |  |
| $b. \qquad y = x^2 - 3x + 5$                   | $b. \qquad y = x^2 - 3x + 5$                          |  |
| $c. \qquad y = x^2 + 3x - 5$                   | $c. \qquad y = x^2 + 3x - 5$                          |  |
| $d. \qquad y = -x^2 - 3x + 5$                  | $d. \qquad y = -x^2 - 3x + 5$                         |  |
| 22. Determine the amount and type of solutions | 23. Describe how the graph of $y = x^2$ is translated |  |
| of $y = -x^2 + 8x - 13$ .                      | for each equation.                                    |  |
|                                                | $a. \qquad y = x^2 + 4$                               |  |
|                                                | $b. \qquad y=x^2-5$                                   |  |
|                                                | $c. \qquad y = (x-3)^2$                               |  |
|                                                | $d. \qquad y = 3(x+2)^2$                              |  |
|                                                | e. $y = (x+6)^2 + 2$                                  |  |
|                                                |                                                       |  |

## Applications

| 24. A rocket is launched into the air. Its height<br>in feet, after x seconds, is given by the equation<br>$h(x) = -16x^2 + 300x + 20$ . | The starting height of the rocket is<br>The maximum height is |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                          | The rocket hits the ground after seconds.                     |
| 25. Two teenagers throw pennies from the top<br>of the school. The quadratics at the right show<br>how high each penny over time.        | Emily: $y = -16x^2 + 20x + 47$                                |
| What are the maximum heights of each penny?                                                                                              | Isaiah: $y = -16x^2 + 15x + 47$                               |
| When did each penny hit the ground?                                                                                                      |                                                               |
| 26. Solve the equation by completing the square: $x^2 + 6x = -22$                                                                        |                                                               |
|                                                                                                                                          |                                                               |

| Honors Math 2           | Unit 1 Test #2            | Review | 3 |
|-------------------------|---------------------------|--------|---|
| 27. Find the vertex for | m of $y = x^2 + 4x + 1$   |        |   |
|                         |                           |        |   |
|                         |                           | Answer |   |
| 28. Find the vertex for | m of $y = -2x^2 + 6x + 1$ |        |   |
|                         |                           |        |   |
|                         |                           |        |   |
|                         |                           |        |   |
|                         |                           | Answer |   |
| 29. Solve by hand - 4   | $x^2 + 80 = 0$            |        |   |
|                         |                           |        |   |
|                         |                           | Answer |   |

30. Write the equation, in standard form, of the parabola in the graph below. The vertex is at (11, 18). Show ALL your work by hand.



31. Meg is building a garden up against one side of her house. She has 150 feet of fencing. Find the dimensions of the dog's pen to maximize the area.

Solve each quadratic inequality. Express your solutions using set notation. 32.  $x^2 + 5x \ge 24$  33.  $5x^2 + 10 \ge 27x$ 

#### Honors Math 2 Unit 1 Test #2 Review

4

For each of the following, determine the equation for the transformation shown below, from the parent graph  $y = x^2$ . Then write the equation in standard form.

34. Translated left 4, down 3

- 35. Translated right 3 and reflected over the x-axis
- 36. Translated left 5, up 2, and vertically stretched by 3

Graph each quadratic inequality or system. Fill in the values requested. Remember to show your work algebraically to receive full credit!

37.  $y > -x^2 + 4x + 5$ 

38. 
$$y \ge x^2 - 2x - 8$$
  
 $y \ge -x^2 - 2x + 8$ 

| x-intercepts:           |  |
|-------------------------|--|
| vertex:                 |  |
| is vertex a max or min? |  |
|                         |  |
| y-intercept:            |  |
| AoS:                    |  |
|                         |  |

Solve each system of equations. Remember to show your work by hand algebraically to receive full credit!

| 39. $y = -x^2 + 2x$ | 40. $y = x^2$ |
|---------------------|---------------|
| $y = x^2 + 2x$      | y = -x + 2    |

|          | - + + + + + - 1             |
|----------|-----------------------------|
|          | ┝┩╼┡┩╼┡┩╼┡┩╼┡┩╼╿            |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          | - + + + + - + - + - + - + - |
|          |                             |
| <b>4</b> |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |
|          |                             |

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <del>                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

# Honors Math 2

Selected Answers:

| 1. (x + 3)(x + 5)                                                                                             | 11a. 0, 11b. 1, 11c. 2      | 24. starting height = 20 feet                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|
| 2. $(x - 8)(x - 3)$                                                                                           | 12a. 2, 12b. 1, 12c. 0      | max height = 1426 feet                                    |
| 3. $(x + 4)(x - 3)$                                                                                           | 14. use x = -b/2a           | hits ground in 18.8 sec                                   |
| 4. (3x + 5)(x + 1)                                                                                            | 15. zero, root              |                                                           |
|                                                                                                               | 16. (4, 3)                  | 25. Emily height 53.25 feet                               |
| 5. x = 4/5, x = -3                                                                                            | 17. (-4, 0), (2, 0)         | Isaiah height 50.52 feet                                  |
| 6. x = 2, x = 6                                                                                               | 18. if $x^2$ is positive    | Emily time 2.45 sec                                       |
| 7. x = 3, x = 4                                                                                               | 19. if $x^2$ is negative    | Isaiah time 2.25 sec                                      |
|                                                                                                               | 20. b and c                 | 263 ± $i\sqrt{3}$                                         |
| $-b\pm\sqrt{b^2-4ac}$                                                                                         | 21. a and d                 |                                                           |
| 8. $x = \frac{2a}{2a}$                                                                                        | 22. 2 real irrational roots | 27. $y = (x + 2)^2 - 3$                                   |
| 9a $b^2 - 4ac$ is positive                                                                                    |                             | 28. $y = -2(x - 3/2)^2 + 11/2$                            |
| 9h $b^2 = Aac$ is zero                                                                                        | 23a. up 4                   | <b>29.</b> $2\sqrt{5}$ . $-2\sqrt{5}$                     |
| $b = \frac{b^2}{4a}$                                                                                          | 23b. down 5                 | 30                                                        |
| 90. $D = 4ac$ is negative                                                                                     | 23c. right 3                | $y = -18/81x^2 + 44/9x - 80/9$                            |
| 10                                                                                                            | 23d. 3 times narrower,      | 31 37 5 ft by 75 ft                                       |
| 10.                                                                                                           | and left 2                  | $22 - \{r \mid r \le 8 \text{ or } r > 3\}$               |
|                                                                                                               | 23e. left 6 and up 2        | <b>52.</b> a. $\{x \mid x \leq -6 \text{ of } x \geq 5\}$ |
| $x = \frac{-4 \pm \sqrt{28}}{-4 \pm \sqrt{28}} = \frac{-4 \pm 2\sqrt{7}}{-4 \pm 2\sqrt{7}} = -2 \pm \sqrt{7}$ |                             | b. $\{x   x \le \frac{2}{0} or x \ge 5\}$                 |
|                                                                                                               |                             | 5                                                         |
| b                                                                                                             |                             |                                                           |
| $-4\pm\sqrt{52}$ $-4\pm2\sqrt{13}$ $-2\pm\sqrt{13}$                                                           |                             |                                                           |
| $x = \frac{6}{6} = \frac{6}{3}$                                                                               |                             |                                                           |

## Honors Math 2 Unit 1 Test #2 Review

### **Review and Practice of application problems.**

1. Which one of these is the standard form of  $y = (x - 2)^2 + 3$ ?

a) 
$$y = x^2 + 4x + 7$$
 b)  $y = x^2 - 4x + 7$  c)  $y = x^2 - 4x + 4$  d)  $y = x^2 + 7$ 

65

3

2

2. Write Equation of the Parabola in Standard Form. Show ALL work by hand!!

3. A rectangular floor has a rectangular rug on it. The floor's width is 5 feet greater than the floor's length, x. The rug's width is 3 feet less than the floor's width. The rug's length is 6 feet less than the rug's width. Write a function, R(x), in simplified form to represent the area of the floor not covered by the rug.

4. A piece of cardboard that is 14 inches by 18 inches is used to form a box with an open top by cutting away congruent squares with side lengths, x, from the corners. Write an equation y, in terms of x, in standard form to model the surface area of the open box after the corners are cut away.

- 5. Each year, a local school's Rock the Vote committee organizes a public rally. Based on previous years, the organizers decided that the Income from ticket sales, I(t) is related to ticket price t by the equation  $I(t) = 400t 40t^2$ .
  - a. What ticket price(s) would generate the greatest income? What is the greatest income possible? Explain how you obtained the value you got.

Ticket price(s) \_\_\_\_\_ Income \_\_\_\_\_

b. At what ticket price(s) would there be no income from the ticket sales. Explain how you obtained the answer.

9.0)

10 11 12 13 1

(6.008

8

9