Mastery Test \& Exam Review Day \#1

Warm Up

1. Explain why the triangles are similar and write a similarity statement. Then, find x, NL, and ML.

For \#2 and 3, find the exact values of the solution(s).
2. $2 x^{2}+4 x=8$ 3.

$$
26=-1+(27 x)^{4}
$$

4. A group of students is planning a school dance for the underclassmen. The cost per ticket to the dance is inversely proportional to the amount of people that will attend the dance. It will cost $\$ 20$ per ticket if 50 people come to the dance. How much will it cost per ticket if 100 people will come to the dance?

Warm Up Answers

1. Explain why the triangles are similar, then write a similarity statement. Find the value of $x, N L$, and ML.

$<\mathbf{L} \cong<\mathrm{L}$ due to reflexive property, $<\mathbf{L M K} \cong<\mathbf{L N J}$ and
<LJN $\cong<L K M$ because if lines are //, then corresponding angles are congruent. So $\Delta J L N \sim \Delta K L M$ by AA~.

BE CAREFUL!!!
Do
$\frac{\text { Side }}{\text { Side }}=\frac{\text { Side }}{\text { Side }}$
NOT
$\frac{\text { Part }}{\text { Side }}=\frac{\text { Side }}{\text { Side }}$

$$
\begin{aligned}
\frac{6 x+2}{7 x+7} & =\frac{16}{24} \\
24(6 x+2) & =16(7 x+7) \\
144 x+48 & =112 x+112 \\
x & =2, \\
N L=21, & \quad M L=14
\end{aligned}
$$

Warm Up Answers

2. Find the exact values of the solutions for $2 x^{2}+4 x=8$

$$
\begin{gathered}
x=\frac{-4 \pm \sqrt{(4)^{2}-4(2)(-8)}}{2(2)}=\frac{-4 \pm \sqrt{80}}{4}=\frac{-4 \pm \sqrt{16 \cdot 5}}{4} \\
=\frac{-4 \pm 4 \sqrt{5}}{4}=\frac{-1 \pm 1 \sqrt{5}}{1}=-1 \pm \sqrt{5}
\end{gathered}
$$

3. Solve.

$$
26=-1+(27 x)^{4}
$$

Isolate. Then use Inverse functions!
$X=3$

Warm Up Answers

4. A group of students is planning a school dance for the underclassmen. The cost per ticket to the dance is inversely proportional to the amount of people that will attend the dance. It will cost $\$ 20$ per ticket if 50 people come to the dance. How much will it cost per ticket if 100 people will come to the dance?

Remember: Use $\mathrm{y}=\mathrm{k} / \mathrm{x}$ for inverse variation.
$\mathrm{C}=\mathrm{k} / \mathrm{p} \quad$ where $\mathrm{c}=$ cost of ticket, $\mathrm{p}=$ \# of people

$$
20=k / 50 \quad->\quad k=1000
$$

so $c=1000 / \mathrm{p}$ is the inverse variation equation for our problem

$$
\text { C = 1000/100 = \$10 per ticket if } 100 \text { people come }
$$

Homework Discussion Review Packet \#32-51

Homework: Update your outline!

Tonight and Tomorrow Night

- Finish Review Packet

Ideas for Studying for Mastery Test \& Exam

- Use your Interactive Student Notebook
- Use your study guides and test reviews throughout the class
- Complete this power point
- Take advantage of the extra resources on my website ©

Discuss Exam Rules, Schedule, etc.

 Before the Final Exam:- Eat a good breakfast/lunch

■ Use the Restroom before the exam period!!
■ Bring something to do after the exam - you'll put it under your desk before the exam (no shuffling in bags during the exam!!)

- Turn Off - and Turn In - your phone
- Study your formulas, vocabulary, etc

■ Get a good night's sleep!!
■ Bring ALL needed supplies (see next slide)

Exam Day Supply Knowledge

Supplies For Final Exam:
■ Calculator, TI-83 or TI-84. The calculator will be cleared upon entering exam.
■ A Well-Charged Calculator OR Extra Batteries for the Calculator (especially if you can't remember when you last replaced them)

- Two Number 2 Pencils
- We'll supply you with blank paper and graph paper, which you'll turn in after the exam

Units 1-5 REVIEW

Everyone needs to get the following:

Whiteboard
Expo Marker
Eraser

Everyone should ALSO have a sheet of paper, calculator and pencil to take notes!

Jeopardy

$1-\$ 100$

- The following 2 triangles are congruent by which postulate?

- AAS

1-\$200

Find $C D$

- 8

1-\$300

- Find x
$\Delta \mathrm{JKL} \sim \Delta \mathrm{GKH}$
- $X=9$

$1-\$ 400$

- What postulate or theorem would prove $\triangle \mathrm{WPX}$ is congruent to $\triangle Z P Y$?

Given: $\begin{aligned} & \angle 1 \cong \angle 2 \\ & W X \\ & \cong \overline{Z Y}\end{aligned}$

- SAS

$1-\$ 500$

- Triangle ABC ~ Triangle PQR
$A=-8 x-10 y, B=2, P=24$, and $Q=6 x+5 y$

What is x and y ?
■ $X=7, y=-8$

$2-\$ 100$

- Use the discriminant to identify the number and type of roots that the function

$$
9 n^{2}-3 n-8=-10 \quad \text { has. }
$$

- -63; two imaginary solutions

$2-\$ 200$

- Factor $16 x^{4}-1$
- $(2 x-1)(2 x+1)\left(4 x^{2}+1\right)$

$2-\$ 300$

- Find the x and y intercepts of $7 x-2 y=-14$
$\square(0,7)$ and $(-2,0)$

$2-\$ 400$

- Solve $2 m^{2}-7 m-13=-10$

$2-\$ 500$

- Name one solution to the inequality
$Y>-2 x^{2}+16 x-34$. (Hint: solve by graphing)
- Any point in the shaded region

$3-\$ 100$

- Simplify

$$
(5-4 \sqrt{5})(-2+\sqrt{5})
$$

$$
-30+13 \sqrt{5}
$$

$$
3 \text { - \$200 }
$$

Q: The weight of a person varies inversely as the square of the distance from the center of the earth. If the radius of the earth is 400 miles, a person would weigh 180 pounds. How much would someone weigh that is 200 miles above the surface of the earth?
$-w=28,800,000 / d^{2}$; 720 pounds

$3-\$ 300$

: Simplify: $5 \sqrt[3]{2 y}-(\sqrt[3]{54 y}-\sqrt[3]{16})$.

$$
\begin{aligned}
5 \sqrt[3]{2 y}-(\sqrt[3]{54 y}-\sqrt[3]{16}) & =5 \sqrt[3]{2 y}-\sqrt[3]{54 y}+\sqrt[3]{16} \\
& =5 \sqrt[3]{2 y}-\sqrt[3]{3^{3} \cdot 2 y}+\sqrt[3]{2^{3} \cdot 2} \\
& =5 \sqrt[3]{2 y}-3 \sqrt[3]{2 y}+2 \sqrt[3]{2} \\
& =2 \sqrt[3]{2 y}+2 \sqrt[3]{2}
\end{aligned}
$$

$3-\$ 400$

- Find the domain and range of

$$
y=\sqrt{x-2}-1
$$

- Domain: $[2, \infty) \quad($ or $x \geq 2)$
- Range: $\quad[-1, \infty) \quad$ (or $y \geq-1$)

$3-\$ 500$

Are the following functions inverses? Why?

- Yes because if you were to switch the x and y (or the n and $f(n)$), you would receive the other function

$4-\$ 100$

How does the quadratic $f(x)=-(x+2)^{2}-5$ translate from its parent graph?
Δ Reflects over the x-axis

- Translates to the left 2
- Translates down 5

$4-\$ 200$

\lrcorner Find the domain and range of

$$
y=\sqrt[3]{x+4}-5
$$

- Domain: $(-\infty, \infty) \quad$ (or All real numbers)
- Range: ($-\infty, \infty$)
(or All real numbers)

$4-\$ 300$

- Find the new points after a

rotation 90° clockwise about the origin
 $S(1,-4), W(1,0), J(3,-4)$

$S^{\prime}(-4,-1), W^{\prime}(0,-1), J^{\prime}(-4,-3)$

$4-\$ 400$

- The shape ABC was transformed through 2 vectors: $<-2,5\rangle$ and $<5,-7\rangle$. Write these two vectors as one, then describe this transformation in words.
- $<3,-2>$
- Shape $A B C$ will be translated 3 units right and 2 units down

$4-\$ 500$

Write an equation for the translation of $y=-$ x
that has the asymptotes $x=8$ and $y=12$. Also, find the domain of the translated equation.

- Equation:
 $$
y=\frac{5}{x-8}+12
$$

- Domain: $(-\infty, 8) \cup(8, \infty)$

$5-\$ 100$

- A straight road to the top of a hill is 3000 feet long and makes an angle of 16 degrees with the horizontal. What is the height of the hill?
- 826.9 feet
(do $\operatorname{Sin}(16)=x / 3000$

$$
x=3000 \sin (16)
$$

$5-\$ 200$

\lrcorner Solve. Express your answer using interval notation.

$$
2 x^{2}+5 x<12
$$

- $(-4,3 / 2)$

$5-\$ 300$

\lrcorner Find the inverse of $y=-2 x^{3}+1$, then sketch both the original and the inverse function

5-\$400

Find $m \angle U S T$ if $m \angle 2=6 x-1$ and $m \angle U S T=10 x+10$.
And Segment SP is an angle bisector

- 70°

$5-\$ 500$

- A dog is 109 inches from a tree, barking at a cat up the tree. The cat is 134 inches from the dog. What is the angle of depression from the cat to the dog?
- 35.6 degrees

Extra Warm-Ups \& Practice

Warm Up Answers

2. The numbers 1 through 12 are placed in a hat and a number is drawn at random. What is the probability of choosing a number that is a multiple of 3 or less than 7 ?

> Remember,
> $P(A$ or $B)=$
> $P(A)+P(B)-P(A \cap B)$
Use this for both Mutually Exclusive and Inclusive events

$$
\begin{gathered}
\mathrm{P}(\text { multiple of } 3 \mathrm{OR} \#<7) \\
=\mathrm{P}(\text { multiple of } 3)+\mathrm{P}(\#<7)-\mathrm{P}(\text { multiple of } 3 \cap \#<7) \\
=4 / 12+6 / 12-2 / 12=8 / 12=2 / 3
\end{gathered}
$$

