Basic Transformations and Algebraic Rules

General Rules

(-) means sign of coordinate is changed. Usually means a reflection.
A coefficient other than 1 means a dilation.
Swapping positions of x and y means either a reflection or a rotation

Example: $(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$
x-coordinate's sign is changed.
Results in a reflection over the y-axis.

Example: $(\mathrm{x}, \mathrm{y}) \rightarrow(5 \mathrm{x}, 5 \mathrm{y})$

Both $(+)$ or $(-)=$ reflection

One (+), one (-) = rotation

Both coordinates are multiplied by 5. This results in an enlargement by 5 .

Reflection over line $y=x$
Example: $(x, y) \rightarrow(-y, x)$ 90° rotation

Translations
Translate by vector $\langle a, b>$
$(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{x}+\mathbf{a}, \mathbf{y}+\mathbf{b})$

Reflections	
$(x, y) \rightarrow(x,-y)$	Reflect over x-axis
$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$	Reflect over y-axis
$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x},-\mathrm{y})$	Reflect over both axes (same as a $\mathbf{1 8 0}^{\circ}$ rotation)
$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{x})$	Reflect over line $y=x$
$(x, y) \rightarrow(-y,-x)$	Reflect over line $y=-x$

Rotations
90° rotation (counter-clockwise) $(x, y) \rightarrow(-y, x)$
180° rotation (same as a reflection around both axes) $(x, y) \rightarrow(-x,-y)$
270° rotation (counter-clockwise) $(x, y) \rightarrow(y,-x)$
$\begin{aligned} & 360^{\circ} \text { rotation } \\ & (\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{x}, \mathbf{y}) \end{aligned}$

Dilations and Stretches/Shrinks	
$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathbf{a x}, \mathrm{ay})$	Dilate by factor a, Centered on the origin. $a>1$ means enlarged $a<1$ means shrunk

Basic Transformations and Algebraic Rules

General Rules

(-) means sign of coordinate is changed. Usually means a reflection.	Example: $(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$	x-coordinate's sign is changed. Results in a reflection over the y-axis.
A coefficient other than 1 means a dilation.	Example: $(\mathrm{x}, \mathrm{y}) \rightarrow(5 \mathrm{x}, 5 \mathrm{y})$	The coordinates are both multiplied by 5. This results in an enlargement by 5
Swapping positions of x and y means either a reflection or a rotation	Both $(+)$ or $(-)=$ reflection	Example: $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{x})$ Reflection over line $y=x$

Fill in the longer blanks (in the center of the page) with Algebraic Rules. Fill in the smaller blanks (by the words) with vocabulary terms or key facts.

	Translations	
Translate $<a, b>$	by	vector

Reflections	
	Reflect over x-axis
	Reflect over y-axis
	Reflect over both axes (same as
	Reflect over line $y=x$

Rotations	
90° rotation (counter-clockwise)	
180° rotation (same as a	
-	
270° rotation (counter-clockwise)	
360° rotation	

$\left.\begin{array}{|c|}\hline \text { Dilations } \\ \hline \\ \text { Dilate by factor } a, \\ \text { Centered on } \ldots \\ \square \\ \hline\end{array}\right]$

